The design of Demand-Adaptive public transportation Systems: Meta-Schedules

Gabriel Teodor Crainic
Fausto Errico
ESG, UQAM and CIRRELT, Montreal
Federico Malucelli
DEI, Politecnico di Milano
Maddalena Nonato
Università di Ferrara
Outline

1. Demand Responsive transit Systems (e.g., DAR)
2. Demand Adaptive transit Systems (DAS)
3. Scheduling issues in DAS, DAR, and Traditional transit
4. The Meta-Schedule problem
 - single segment subproblem - sampling-based technique
 - sewing segments together
5. Conclusions
Flexibility in Transit Systems

- Offer competitive transportation services
 - Capture additional demand
 - Better address population needs
 - Cover larger/additional areas

- Sustainability
 - Reduce operating costs
 - Increase resource utilization

- Integration with traditional transportation systems
 - User point of view
 - Management point of view
Dial a Ride Systems

- Users ask for personalized rides (door-to-door service)
- But are served collectively
 - Similar to a collective taxi service
- Initially devised to meet needs of users with reduced mobility
- Extended (somewhat) to deal with “low demand” areas or periods
- Quite expensive compared to regular service
- Frequency? Regularity?
Demand Adaptive System (DAS)

- Combine DAR flexibility to traditional system regularity and low-cost
 - Compulsory stops with time windows
 - regular line
 - Optional stops on request (active users)
 - Segments: Set of optional stops between two consecutive compulsory stops
 - Users can still access the service at compulsory stops (passive users)
A DAS line

Passive users only
A DAS line

Active and passive users
DAS as feeder lines
Multiple Lines

Transfer points among flexible (and traditional) lines (compulsory stops)
Traditional Transit
- Passing time at each stop of the line
- Designed for medium-term periods (six months, one year)
- Users plan their trips based on published schedules
- Tactical planning decision (line definition: higher level)

DAR
- Particular to each vehicle tour
- Varying according to the actual requests
- Operational planning activity
Scheduling Issues for DAS

- Combines planning phases of traditional transit and DAR
- Two schedules are built
- **Meta-Schedule**: Similar to Traditional Transit
 - Basic line definition: time windows at compulsory stops
 - Users plan trips based on the published Meta-Schedule
 - Tactical planning decision (compulsory stops, segments, frequencies at higher level)
- Each departure schedule: Similar to DAR
 - Defines the actual vehicle itinerary
 - Varies according to actual requests
 - Must be compatible with the Master Schedule
 - Operational planning activity
Basic DAS Design Problem
Basic DAS Design Problem

Input

- Region to serve
Basic DAS Design Problem

Input

- Region to serve
- Demand

Basic DAS Design Problem

Input

- Region to serve
- Demand

Decisions
Basic DAS Design Problem

Input
- Region to serve
- Demand

Decisions
- Compulsory stops
Basic DAS Design Problem

Input
- Region to serve
- Demand

Decisions
- Compulsory stops
- Sequencing
Basic DAS Design Problem

Input

- Region to serve
- Demand

Decisions

- Compulsory stops
- Sequencing
- Segments
Basic DAS Design Problem

Input
- Region to serve
- Demand

Decisions
- Compulsory stops
- Sequencing
- Segments
- Time windows
Basic DAS Design Problem

Input
- Region to serve
- Demand

Decisions
- Compulsory stops
- Sequencing
- Segments
- Time windows

Goals
- Low routing costs
- High level of service
Time Windows
Time Windows

- Policy
- Given a compulsory stop and its time window $[a, b]$
- The Vehicle
 - Must leave the compulsory stop within the time interval $[a, b]$
 - May arrive before a
Consequences

- Passive users must be at the compulsory stop not later than a
- Passengers on the bus may experience idle times
- Time windows represent bounds on user travel time
Time Windows

Main Features

- Distance

- Width
Main Features

- Distance
 - Time to serve the optional stop
 - Idle times at compulsory stops
- Width
Main Features

- Distance
 - Time to serve the optional stop
 - Idle times at compulsory stops

- Width
 - Flexibility
 - Long waiting times for passive users

Meta-Schedule: problem description

Input
- Topological design
- Demand for transportation
- Policy for time windows
Meta-Schedule: problem description

Input
- Topological design
- Demand for transportation
- Policy for time windows

Output
- A time window for each compulsory stop
Meta-Schedule: problem description

Input
- Topological design
- Demand for transportation
- Policy for time windows

Output
- A time window for each compulsory stop

Conflicting goals
- Provide sufficient time to serve optional stops
- Minimize total maximum time
- Small time windows
- Minimize *idle* times
-
Problem Setting and Assumptions
Problem Setting and Assumptions

Demand

- Probability distributions of requests for o/d pairs
- \Rightarrow Probability of at least one request derived for each optional stop
- \Rightarrow Serve the set of requests \Leftrightarrow Serve the set of requested stops
Problem Setting and Assumptions

- **Demand**
 - Probability distributions of requests for o/d pairs
 - ⇒ Probability of at least one request derived for each optional stop
 - ⇒ Serve the set of requests ⇔ Serve the set of requested stops

- **Time windows**
 - We consider time windows with common and fixed width δ
 - Two possible easy extensions
 - Fixed but different width
 - Maximum width
Formaly

Input

- A sequence of compulsory stops
- A set of optional stops partitioned into segments
- Travel time c_{ij} for the pair of stops (i, j) in a segment
- Probability p_i of being requested for service for optional stop i
Formaly

Input
- A sequence of compulsory stops
- A set of optional stops partitioned into *segments*
- Travel time c_{ij} for the pair of stops $\langle i, j \rangle$ in a segment
- Probability p_i of being requested for service for optional stop i

Output
- Time windows $[a_h, b_h]$ for compulsory stop f_h, $b_h - a_h = \delta$
- It reduces to finding a sequence $\{b_0, b_1, \ldots, b_n\}$
Formaly

- **Input**
 - A sequence of compulsory stops
 - A set of optional stops partitioned into *segments*
 - Travel time c_{ij} for the pair of stops (i, j) in a segment
 - Probability p_i of being requested for service for optional stop i

- **Output**
 - Time windows $[a_h, b_h]$ for compulsory stop f_h, $b_h - a_h = \delta$
 - It reduces to finding a sequence $\{b_0, b_1, \ldots, b_n\}$

- **Goals**
 - Serve *any* requested optional stop with probability P_ϵ
 - Minimize $b_n
Subproblem: Single Segment

- Input
- A segment
Subproblem: Single Segment

- Input
- A segment
- Probability p_i for optional stop i of being active
Subproblem: Single Segment

- Input
 - A segment
 - Probability p_i for optional stop i of being active
 - The departure time \bar{L}_{h-1} at compulsory f_{h-1}
To any subset $S_h \in N_h$ of optional stops is associated

- Probability p_{S_h} of being active
To any subset $S_h \in N_h$ of optional stops is associated
- Probability p_{S_h} of being active
- Service Time $H_h \rightarrow$ (active set) Hamiltonian Path?
- Arrival Time T_h at the second compulsory f_h
Subproblem: Single Segment

To any subset $S_h \in N_h$ of optional stops is associated
- Probability p_{S_h} of being active
- Service Time $H_h \rightarrow$ (active set) Hamiltonian Path?
- Arrival Time T_h at the second compulsory f_h

H_h and T_h are random variables
Subproblem: Single Segment

\[
T_h(\omega) = H_h(\omega) + \bar{L}_{h-1}
\]

\[
S_h(\omega)
\]

Goal
Subproblem: Single Segment

\[
T_h(\omega) = H_h(\omega) + \bar{L}_{h-1}
\]

- **Goal**
- Find the smallest value \(b_h\) such that \(b_h \geq T_h(\omega)\) with probability \(1 - \epsilon\) (to guarantee good service)
Goal

Find the smallest value b_h such that

$b_h \geq T_h(\omega)$ with probability $1 - \epsilon$ (to guarantee good service)

We take $b_h = T_h^{1-\epsilon} = H_h^{1-\epsilon} + L_{h-1}$, with $T_h^{1-\epsilon}, H_h^{1-\epsilon}$ defined as

$\mathcal{P}\{H_h(\omega) \leq H_h^{1-\epsilon}\} \geq 1 - \epsilon$ and $\mathcal{P}\{T_h(\omega) \leq T_h^{1-\epsilon}\} \geq 1 - \epsilon$
Subproblem: Single Segment

\[T_h(\omega) = H_h(\omega) + \bar{L}_{h-1} \]

Crucial Point
Subproblem: Single Segment

\[
T_h(\omega) = H_h(\omega) + \bar{L}_{h-1}
\]

Crucial Point

- How do we compute \(T_h^{1-\epsilon} \) or \(H_h^{1-\epsilon} \) (they differ by a constant)?
Subproblem: Single Segment

\[\bar{L}_{h-1} \quad S_h(\omega) \quad \bar{L}_{h-1} \]

\[f_{h-1} \quad \bar{L}_{h-1} \quad S_h(\omega) \quad f_h \quad p_i \]

\[T_h(\omega) = H_h(\omega) + \bar{L}_{h-1} \]

Crucial Point

- How do we compute \(T_h^{1-\epsilon} \) or \(H_h^{1-\epsilon} \) (they differ by a constant)?

- Cumulative Distribution Function (CDF) and Probability Mass Function (PMF) for \(H_h(\omega) \) and \(T_h(\omega) \) are needed
Subproblem: Single Segment

\[T_h(\omega) = H_h(\omega) + \bar{L}_{h-1} \]

Crucial Point

How do we compute \(T_h^{1-\epsilon} \) or \(H_h^{1-\epsilon} \) (they differ by a constant)?

Cumulative Distribution Function (CDF) and Probability Mass Function (PMF) for \(H_h(\omega) \) and \(T_h(\omega) \) are needed

Requires \(2^{|N_h|} \) service-time evaluations!
Subproblem: Single Segment

Crucial Point

How do we compute $T_{h}^{1-\epsilon}$ or $H_{h}^{1-\epsilon}$ (they differ by a constant)?

Cumulative Distribution Function (CDF) and Probability Mass Function (PMF) for $H_{h}(\omega)$ and $T_{h}(\omega)$ are needed

Requires $2^{|N_{h}|}$ service-time evaluations!

We estimate the PMF by sampling
Sampling Algorithm

- Take \(\{r_1, r_2, \ldots, r_l\} \) random samples of relatively small cardinality
- Compute the \(PMF_k, CDF_k \), and \(b_h^k \) for each sample \(r_k \)
- Compute the mean value and standard deviation of \(b_h^k \)
- If the standard deviation is small, i.e., the solution is *precise*, stop
- Otherwise, increment the cardinality of the samples and iterate
Sampling Algorithm

- Take \(\{r_1, r_2, \ldots, r_l\} \) random samples of relatively small cardinality
- Compute the \(PMF_k, CDF_k \), and \(b^k_h \) for each sample \(r_k \)
- Compute the mean value and standard deviation of \(b^k_h \)
- If the standard deviation is small, i.e., the solution is *precise*, stop
- Otherwise, increment the cardinality of the samples and iterate

Observations
- The algorithm is very simple. But
- No guarantee of unbiased solution
- The dimension of the sample may become critical
Experimentation

- Focus on the estimation of the service time for a single segment
- Square-shaped segments, side length 300
- Compulsory stops at the extremities of one diagonal
- Optional stops are uniformly distributed on the square
- To each optional stop is associated a positive probability, 50% in average
 \[P_\varepsilon = 0.95 \]
- Hamiltonian Path computed by our basic B&C code
Results A20

<table>
<thead>
<tr>
<th>Dim.</th>
<th>nSamples</th>
<th>dimSamples</th>
<th>$\bar{b}_h(\varepsilon)$</th>
<th>Std-dev/$\bar{b}_h(\varepsilon)$</th>
<th>Time(sec.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>5</td>
<td>50</td>
<td>1061.5</td>
<td>0.012</td>
<td>1.9</td>
</tr>
<tr>
<td>20</td>
<td>5</td>
<td>100</td>
<td>1061.5</td>
<td>0.01</td>
<td>3.77</td>
</tr>
<tr>
<td>20</td>
<td>5</td>
<td>150</td>
<td>1060.5</td>
<td>0.009</td>
<td>5.65</td>
</tr>
<tr>
<td>20</td>
<td>5</td>
<td>200</td>
<td>1057.5</td>
<td>0.007</td>
<td>7.52</td>
</tr>
<tr>
<td>20</td>
<td>5</td>
<td>250</td>
<td>1061.5</td>
<td>0.008</td>
<td>9.35</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>50</td>
<td>1061.5</td>
<td>0.013</td>
<td>3.76</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>100</td>
<td>1056.5</td>
<td>0.011</td>
<td>7.48</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>150</td>
<td>1061</td>
<td>0.009</td>
<td>11.31</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>200</td>
<td>1062.5</td>
<td>0.008</td>
<td>15.25</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>250</td>
<td>1063</td>
<td>0.007</td>
<td>18.81</td>
</tr>
<tr>
<td>20</td>
<td>15</td>
<td>50</td>
<td>1061.83</td>
<td>0.011</td>
<td>5.62</td>
</tr>
<tr>
<td>20</td>
<td>15</td>
<td>100</td>
<td>1059.17</td>
<td>0.01</td>
<td>11.29</td>
</tr>
<tr>
<td>20</td>
<td>15</td>
<td>150</td>
<td>1061.17</td>
<td>0.01</td>
<td>16.86</td>
</tr>
<tr>
<td>20</td>
<td>15</td>
<td>200</td>
<td>1061.5</td>
<td>0.007</td>
<td>22.58</td>
</tr>
<tr>
<td>20</td>
<td>15</td>
<td>250</td>
<td>1062.17</td>
<td>0.007</td>
<td>28.19</td>
</tr>
<tr>
<td>Dim.</td>
<td>nSamples</td>
<td>dimSamples</td>
<td>$\bar{b}_h(\varepsilon)$</td>
<td>Std-dev/$\bar{b}_h(\varepsilon)$</td>
<td>Time(sec.)</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>------------</td>
<td>-----------------</td>
<td>-----------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>30</td>
<td>5</td>
<td>50</td>
<td>1117.5</td>
<td>0.011</td>
<td>3.74</td>
</tr>
<tr>
<td>30</td>
<td>5</td>
<td>100</td>
<td>1123.5</td>
<td>0.011</td>
<td>7.52</td>
</tr>
<tr>
<td>30</td>
<td>5</td>
<td>150</td>
<td>1124.5</td>
<td>0.008</td>
<td>11.79</td>
</tr>
<tr>
<td>30</td>
<td>5</td>
<td>200</td>
<td>1129.5</td>
<td>0.008</td>
<td>15.38</td>
</tr>
<tr>
<td>30</td>
<td>5</td>
<td>250</td>
<td>1131.5</td>
<td>0.008</td>
<td>19.41</td>
</tr>
<tr>
<td>30</td>
<td>10</td>
<td>50</td>
<td>1125</td>
<td>0.012</td>
<td>7.47</td>
</tr>
<tr>
<td>30</td>
<td>10</td>
<td>100</td>
<td>1127.5</td>
<td>0.013</td>
<td>15.4</td>
</tr>
<tr>
<td>30</td>
<td>10</td>
<td>150</td>
<td>1128</td>
<td>0.007</td>
<td>22.95</td>
</tr>
<tr>
<td>30</td>
<td>10</td>
<td>200</td>
<td>1129.5</td>
<td>0.006</td>
<td>30.13</td>
</tr>
<tr>
<td>30</td>
<td>10</td>
<td>250</td>
<td>1131.5</td>
<td>0.006</td>
<td>37.98</td>
</tr>
<tr>
<td>30</td>
<td>15</td>
<td>50</td>
<td>1123.83</td>
<td>0.012</td>
<td>11.85</td>
</tr>
<tr>
<td>30</td>
<td>15</td>
<td>100</td>
<td>1127.17</td>
<td>0.011</td>
<td>22.99</td>
</tr>
<tr>
<td>30</td>
<td>15</td>
<td>150</td>
<td>1130.17</td>
<td>0.007</td>
<td>34.58</td>
</tr>
<tr>
<td>30</td>
<td>15</td>
<td>200</td>
<td>1129.17</td>
<td>0.006</td>
<td>44.95</td>
</tr>
<tr>
<td>30</td>
<td>15</td>
<td>250</td>
<td>1130.17</td>
<td>0.005</td>
<td>55.47</td>
</tr>
</tbody>
</table>
Results A40

<table>
<thead>
<tr>
<th>Dim.</th>
<th>nSamples</th>
<th>dimSamples</th>
<th>(\bar{b}_h(\varepsilon))</th>
<th>Std-dev/(\bar{b}_h(\varepsilon))</th>
<th>Time(sec.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>5</td>
<td>50</td>
<td>1271.5</td>
<td>0.013</td>
<td>11.01</td>
</tr>
<tr>
<td>40</td>
<td>5</td>
<td>100</td>
<td>1272.5</td>
<td>0.009</td>
<td>17.24</td>
</tr>
<tr>
<td>40</td>
<td>5</td>
<td>150</td>
<td>1274.5</td>
<td>0.008</td>
<td>27.9</td>
</tr>
<tr>
<td>40</td>
<td>5</td>
<td>200</td>
<td>1278.5</td>
<td>0.009</td>
<td>34.5</td>
</tr>
<tr>
<td>40</td>
<td>5</td>
<td>250</td>
<td>1277.5</td>
<td>0.007</td>
<td>42.57</td>
</tr>
<tr>
<td>40</td>
<td>10</td>
<td>50</td>
<td>1275</td>
<td>0.009</td>
<td>17.23</td>
</tr>
<tr>
<td>40</td>
<td>10</td>
<td>100</td>
<td>1279</td>
<td>0.012</td>
<td>34.47</td>
</tr>
<tr>
<td>40</td>
<td>10</td>
<td>150</td>
<td>1281.5</td>
<td>0.011</td>
<td>50.13</td>
</tr>
<tr>
<td>40</td>
<td>10</td>
<td>200</td>
<td>1278.5</td>
<td>0.008</td>
<td>63.37</td>
</tr>
<tr>
<td>40</td>
<td>10</td>
<td>250</td>
<td>1276.5</td>
<td>0.006</td>
<td>80.98</td>
</tr>
<tr>
<td>40</td>
<td>15</td>
<td>50</td>
<td>1274.17</td>
<td>0.011</td>
<td>27.85</td>
</tr>
<tr>
<td>40</td>
<td>15</td>
<td>100</td>
<td>1280.17</td>
<td>0.012</td>
<td>50.23</td>
</tr>
<tr>
<td>40</td>
<td>15</td>
<td>150</td>
<td>1278.83</td>
<td>0.01</td>
<td>74.34</td>
</tr>
<tr>
<td>40</td>
<td>15</td>
<td>200</td>
<td>1276.5</td>
<td>0.007</td>
<td>97.67</td>
</tr>
<tr>
<td>40</td>
<td>15</td>
<td>250</td>
<td>1275.5</td>
<td>0.005</td>
<td>119.65</td>
</tr>
</tbody>
</table>
Results A50

<table>
<thead>
<tr>
<th>Dim.</th>
<th>nSamples</th>
<th>dimSamples</th>
<th>$\bar{b}_h(\varepsilon)$</th>
<th>Std-dev/$\bar{b}_h(\varepsilon)$</th>
<th>Time (sec.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>5</td>
<td>50</td>
<td>1387.5</td>
<td>0.009</td>
<td>33.82</td>
</tr>
<tr>
<td>50</td>
<td>5</td>
<td>100</td>
<td>1380.5</td>
<td>0.007</td>
<td>66.26</td>
</tr>
<tr>
<td>50</td>
<td>5</td>
<td>150</td>
<td>1387.5</td>
<td>0.01</td>
<td>99.03</td>
</tr>
<tr>
<td>50</td>
<td>5</td>
<td>200</td>
<td>1385.5</td>
<td>0.009</td>
<td>131.54</td>
</tr>
<tr>
<td>50</td>
<td>5</td>
<td>250</td>
<td>1387.5</td>
<td>0.004</td>
<td>164.13</td>
</tr>
<tr>
<td>50</td>
<td>10</td>
<td>50</td>
<td>1383.5</td>
<td>0.011</td>
<td>66.2</td>
</tr>
<tr>
<td>50</td>
<td>10</td>
<td>100</td>
<td>1383.5</td>
<td>0.01</td>
<td>131.49</td>
</tr>
<tr>
<td>50</td>
<td>10</td>
<td>150</td>
<td>1391</td>
<td>0.008</td>
<td>202.83</td>
</tr>
<tr>
<td>50</td>
<td>10</td>
<td>200</td>
<td>1386.5</td>
<td>0.007</td>
<td>267.47</td>
</tr>
<tr>
<td>50</td>
<td>10</td>
<td>250</td>
<td>1389.5</td>
<td>0.005</td>
<td>339.48</td>
</tr>
<tr>
<td>50</td>
<td>15</td>
<td>50</td>
<td>1382.83</td>
<td>0.014</td>
<td>98.93</td>
</tr>
<tr>
<td>50</td>
<td>15</td>
<td>100</td>
<td>1385.83</td>
<td>0.011</td>
<td>202.87</td>
</tr>
<tr>
<td>50</td>
<td>15</td>
<td>150</td>
<td>1389.5</td>
<td>0.007</td>
<td>304.37</td>
</tr>
<tr>
<td>50</td>
<td>15</td>
<td>200</td>
<td>1386.5</td>
<td>0.006</td>
<td>400.23</td>
</tr>
<tr>
<td>50</td>
<td>15</td>
<td>250</td>
<td>1388.17</td>
<td>0.006</td>
<td>494.62</td>
</tr>
</tbody>
</table>

Longest 1-Path | Hamiltonian Path | “Real” $\bar{b}_h(\varepsilon)$ |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>558.7</td>
<td>1880</td>
<td>1387.5</td>
</tr>
</tbody>
</table>
Conclusions (1)

- The algorithm for estimating time windows is fast
- The number of samplings is not very important
- The cardinality of samples is important. Around 200
- Method successful in solving problems with high dimension
Sewing Segments

- We introduce a new random variable
 - The vehicle departure time $L_h(\omega)$ at compulsory stop f_h where

 $a_h \leq L_h(\omega) \leq b_h$

 $T_h(\omega) = L_{h-1}(\omega) + H_h(\omega)$ needed to compute $[a_h, b_h]$.

- $T_h(\omega)$ and $L_h(\omega)$ are linked by the relation

\[
L_h(\omega) = \begin{cases}
 T_h(\omega) & \text{if } \omega \mid a_h \leq T_h(\omega) \leq b_h; \\
 a_h & \text{if } \omega \mid T_h(\omega) < a_h; \\
 b_h & \text{if } \omega \mid T_h(\omega) > b_h.
\end{cases}
\]

- Observe that $L_{h-1}(\omega)$ and $H_h(\omega)$ are independent.

- $T_h(\omega)$ can be computed by convoluting $L_{h-1}(\omega)$ and $H_h(\omega)$.

Complete Scheme

Input

- Sequence of segments $G = \bigcup_{1,2,\ldots,n} G_h$
- Service probability $P_\epsilon = (1 - \epsilon)^n$
Complete Scheme

Input
- Sequence of segments $G = \bigcup_{1,2,\ldots,n} G_h$
- Service probability $P_\epsilon = (1 - \epsilon)^n$

Algorithm
1. For each segment G_h, $h \in \{1, 2, \ldots, n\}$
 (a) Compute PMF and CDF of $L_{h-1}(\omega)$
 (b) Compute PMF and CDF of $H_h(\omega)$
 (c) Compute PMF and CDF of $T_h(\omega)$ as the convolution of the PMFs of L_{h-1} and H_h
 (d) Compute $T_h^{1-\epsilon}$ and set $b_h = T_h^{1-\epsilon}$.
Complete Scheme

Input

- Sequence of segments $G = \bigcup_{1, 2, \ldots, n} G_h$
- Service probability $P_\epsilon = (1 - \epsilon)^n$

Algorithm

1. For each segment G_h, $h \in \{1, 2, \ldots, n\}$
 (a) Compute PMF and CDF of $L_{h-1}^1(\omega)$
 (b) Compute PMF and CDF of $H_h(\omega)$
 (c) Compute PMF and CDF of $T_h(\omega)$ as the convolution of the PMFs of L_{h-1} and H_h
 (d) Compute $T_h^{1-\epsilon}$ and set $b_h = T_h^{1-\epsilon}$.

Output

- The best sequence $\{b_1, b_2, \ldots, b_n\}$
- Such that any randomly requested optional stop is served with probability P_ϵ
Experimentation

- **Goal**
 - evaluate the quality of the produced master schedules

- **Given several:**
 - topological DAS line design
 - origin destination demand distributions

- **Compute several master schedules varying:**
 - time window width δ
 - probabilities ϵ

- **Simulate** operations monitoring:
 - percentage of rejected requests
 - passive user waiting times
 - idle times at compulsory
 - ...
Results

<table>
<thead>
<tr>
<th>ϵ</th>
<th>δ</th>
<th>b_4</th>
<th>avg(R/T)</th>
<th>stdv(R/T)</th>
<th>avg(I)</th>
<th>stdv(I)</th>
<th>avg(P)</th>
<th>stdv(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.90</td>
<td>300</td>
<td>3032</td>
<td>0.008</td>
<td>0.028</td>
<td>68.09</td>
<td>54.64</td>
<td>46.17</td>
<td>43.76</td>
</tr>
<tr>
<td>0.90</td>
<td>400</td>
<td>3017</td>
<td>0.006</td>
<td>0.023</td>
<td>45.14</td>
<td>52.04</td>
<td>88.97</td>
<td>74.86</td>
</tr>
<tr>
<td>0.90</td>
<td>500</td>
<td>3117</td>
<td>0.006</td>
<td>0.023</td>
<td>30.30</td>
<td>44.21</td>
<td>148.70</td>
<td>108.48</td>
</tr>
<tr>
<td>0.95</td>
<td>300</td>
<td>3152</td>
<td>0.004</td>
<td>0.020</td>
<td>92.47</td>
<td>62.20</td>
<td>35.25</td>
<td>42.70</td>
</tr>
<tr>
<td>0.95</td>
<td>400</td>
<td>3132</td>
<td>0.004</td>
<td>0.020</td>
<td>65.47</td>
<td>54.62</td>
<td>61.40</td>
<td>64.54</td>
</tr>
<tr>
<td>0.95</td>
<td>500</td>
<td>3132</td>
<td>0.004</td>
<td>0.019</td>
<td>46.70</td>
<td>53.37</td>
<td>108.09</td>
<td>93.49</td>
</tr>
<tr>
<td>0.90</td>
<td>300</td>
<td>3692</td>
<td>0.016</td>
<td>0.021</td>
<td>9.1</td>
<td>26.30</td>
<td>154.1</td>
<td>71.20</td>
</tr>
<tr>
<td>0.90</td>
<td>400</td>
<td>3692</td>
<td>0.014</td>
<td>0.020</td>
<td>4.7</td>
<td>20.12</td>
<td>243.0</td>
<td>85.83</td>
</tr>
<tr>
<td>0.90</td>
<td>500</td>
<td>3692</td>
<td>0.015</td>
<td>0.021</td>
<td>2.7</td>
<td>15.11</td>
<td>345.79</td>
<td>96.03</td>
</tr>
<tr>
<td>0.95</td>
<td>300</td>
<td>4022</td>
<td>0.009</td>
<td>0.017</td>
<td>11.7</td>
<td>28.36</td>
<td>137.51</td>
<td>70.40</td>
</tr>
<tr>
<td>0.95</td>
<td>400</td>
<td>4022</td>
<td>0.011</td>
<td>0.018</td>
<td>6.6</td>
<td>23.46</td>
<td>222.95</td>
<td>89.44</td>
</tr>
<tr>
<td>0.95</td>
<td>500</td>
<td>4022</td>
<td>0.011</td>
<td>0.016</td>
<td>3.5</td>
<td>17.85</td>
<td>312.75</td>
<td>98.98</td>
</tr>
</tbody>
</table>

Master schedule evaluated on 4-segment line, low and high demand, 100 realizations
Conclusions (2)

- Demand Adaptive transit Systems
- DAS scheduling different from DAR and traditional transit
- The Meta-Schedule problem
- May be efficiently addressed by sampling (single segment)
- Results for general framework are satisfactory under different demand and line scenarios